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Key points: 17 

● Evaluation of uninitialized multi-decadal climate model future projection performance 18 

provides a concrete test of model skill. 19 

● The quasi-linear relationship between model / observed forcings and temperature change is 20 

used to control for errors in projected forcing. 21 

● Model simulations published between 1970 and 2007 were skillful in projecting future global 22 

mean surface warming. 23 

 24 

Abstract 25 

 26 

Retrospectively comparing future model projections to observations provides a robust and 27 

independent test of model skill. Here we analyse the performance of climate models published 28 

between 1970 and 2007 in projecting future global mean surface temperature (GMST) changes. 29 

Models are compared to observations based on both the change in GMST over time and the 30 

change in GMST over the change in external forcing. The latter approach accounts for 31 

mismatches in model forcings, a potential source of error in model projections independent of 32 

the accuracy of model physics. We find that climate models published over the past five 33 

decades were skillful in predicting subsequent GMST changes, with most models examined 34 

showing warming consistent with observations, particularly when mismatches between model-35 

projected and observationally-estimated forcings were taken into account.  36 

 37 

Plain Language Summary 38 

 39 

Climate models provide an important way to understand future changes in the Earth’s climate. 40 

In this paper we undertake a thorough evaluation of the performance of various climate models 41 

published between the early 1970s and the late 2000s. Specifically, we look at how well models 42 

project global warming in the years after they were published by comparing them to observed 43 

temperature changes. Model projections rely on two things to accurately match observations: 44 
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accurate modeling of climate physics, and accurate assumptions around future emissions of 45 

CO2 and other factors affecting the climate. The best physics-based model will still be 46 

inaccurate if it projects future changes in emissions that differ from reality. To account for this, 47 

we look at how the relationship between temperature and atmospheric CO2 (and other climate 48 

drivers) differs between models and observations. We find that climate models published over 49 

the past five decades were generally quite accurate in predicting global warming in the years 50 

after publication, particularly when accounting for differences between modeled and actual 51 

changes in atmospheric CO2 and other climate drivers. This research should help resolve public 52 

confusion around the performance of past climate modeling efforts, and increases our 53 

confidence that models are accurately projecting global warming. 54 

 55 

1 Introduction 56 

 57 

Physics-based models provide an important tool to assess changes in the Earth’s climate due to 58 

external forcing and internal variability (e.g. Arrhenius, 1896; IPCC 2013). However, evaluating 59 

the performance of these models can be challenging. While models are commonly evaluated by 60 

comparing “hindcasts” of prior climate variables to historical observations, the development of 61 

hindcast simulations is not always independent from the tuning of parameters that govern 62 

unresolved physics (Schmidt et al. 2017; Mauritsen et al. 2019; Gettelman et al. 2019). There 63 

has been relatively little work evaluating the performance of climate model projections over their 64 

future projection period (referred to hereafter as model projections), as much of the research 65 

tends to focus on the latest generation of modeling results (Eyring et al. 2019). 66 

 67 

Many different sets of climate projections have been produced over the past several decades. 68 

The first time series projections of future temperatures were computed using simple energy 69 

balance models in the early 1970s, most of which were solely constrained by a projected 70 

external forcing time series (originally, CO2 concentrations) and an estimate of equilibrium 71 

climate sensitivity from single-column radiative-convective equilibrium models (e.g. Manabe and 72 

Wetherald 1967) or general circulation models (e.g. Manabe and Wetherald 1975). Simple 73 

energy balance models have since been gradually side-lined in favor of increasingly high-74 

resolution and comprehensive general circulation models, which were first published in the late 75 

1980s (e.g. Hansen et al. 1988, Stouffer et al. 1989, IPCC 2013).  76 

 77 

Climate model projections are usefully thought about as predictions conditional upon a specific 78 

forcing scenario. We consider these to be projections of possible future outcomes when the 79 

intent was to use a realistic forcing scenario, and where the realized forcings were qualitatively 80 

similar to the projection forcings. Evaluating model projections against observations subsequent 81 

to model development provides a test of model skill, and successful projections can concretely 82 

add confidence in the process of making projections for the future. However, evaluating future 83 

projection performance requires a sufficient period of time post-publication for the forced signal 84 

present in the model projections to be differentiable from the noise of natural variability (Hansen 85 

et al. 1988; Hawkins and Sutton, 2012).  86 

 87 



 

Researchers have previously evaluated prior model projections from the Hansen et al. (1988) 88 

NASA Goddard Institute for Space Studies model (Rahmstorf et al. 2007, Hargreaves et al. 89 

2010), the Stouffer and Manabe (1989) Geophysical Fluid Dynamics Laboratory model (Stouffer 90 

and Manabe 2017), the IPCC First Assessment Report (IPCC 1990; Frame and Stone 2012), 91 

and the IPCC Third and Fourth Assessment reports (IPCC 2001; IPCC 2007; Rahmstorf et al. 92 

2012). However, to-date there has been no systematic review of the performance of past 93 

climate models, despite the availability of warming projections starting in 1970. 94 

 95 

This paper analyses projections of global mean surface temperature (GMST) change, one of the 96 

most visible climate model outputs, from several generations of past models. GMST plays a 97 

large role in determining climate impacts, is tied directly to international-agreed-upon mitigation 98 

targets, and is one of the climate variables that has the most accurate and longest observational 99 

records. GMST is also the output most commonly available for many early climate models run in 100 

the 1970s and 1980s. 101 

 102 

Two primary factors influence the long-term performance of model GMST projections: 1) The 103 

accuracy of the model physics, including the sensitivity of the climate to external forcings and 104 

the resolution or parameterization of various physical processes such as heat uptake by the 105 

deep ocean and 2) the accuracy of projected changes in external forcing due to greenhouse 106 

gases and aerosols, as well as natural forcing such as solar or volcanic forcing. 107 

 108 

While climate models should be evaluated based on the accuracy of model physics 109 

formulations, climate modelers cannot be expected to accurately project future emissions and 110 

associated changes in external forcings, which depend on human behavior, technological 111 

change, and economic and population growth. Climate modellers often bypass the task of 112 

deterministically predicting future emissions by instead projecting a range of forcing trajectories 113 

representative of several plausible futures bracketed by marginally-plausible extremes. For 114 

example, Hansen et al. 1988 consider a low-emissions extreme scenario C with “more drastic 115 

curtailment of emissions than has generally been imagined,” a high-emissions extreme scenario 116 

A wherein emissions “must eventually be on the high side of reality,” as well as a middle-ground 117 

scenario B which “is perhaps the most plausible of the three”. More recently, the Representative 118 

Concentration Pathways used in CMIP5 and the IPCC AR5 report similarly includes a number of 119 

plausible scenarios bracketed by a low-emissions extreme scenario RCP2.6 and a high-120 

emissions extreme scenario RCP8.5 (van Vuuren et al. 2011). Thus an evaluation of model 121 

projection performance should focus on the relationship between the model forcings and 122 

temperature change, rather than simply assessing how well projected temperatures compare to 123 

observations, particularly in cases where projected forcings differ substantially from our best 124 

estimate of the subsequently observed forcings. 125 

 126 

This approach – comparing the relationship between forcing and temperatures in both model 127 

projections and observations – can effectively assess the performance of the model physics 128 

while accounting for potential mismatches in projected forcing that climate modelers did not 129 

address at the time. In this paper we apply both a conventional assessment of the change in 130 

temperature over time and a novel assessment of the response of temperature to the change in 131 



 

forcing to assess the performance of future projections by past climate models compared to 132 

observations. 133 

 134 

Climate modeling efforts have advanced substantially since the first modern single-column 135 

(Manabe and Strickler 1964) and general circulation models (Manabe et al. 1965) of Earth’s 136 

climate were published in the mid 1960s, resulting in continually improving model hindcast skill 137 

(Reichler and Kim 2008, Knutti et al. 2013). While these improvements have rendered virtually 138 

all of the models described here operationally obsolete, they remain valuable tools as they are 139 

in a unique position to have their projections evaluated by virtue of their decades-long post-140 

publication projection periods. 141 

 142 

Methods 143 

 144 

We conducted a literature search to identify papers published prior to the early-1990s that 145 

include climate model outputs containing both a time-series of projected future GMST (with a 146 

minimum of two points in time) and future forcings (including both a publication date and future 147 

projected atmospheric CO2 concentrations, at a minimum). Eleven papers with fourteen distinct 148 

projections were identified that fit these criteria. Starting in the mid-1990s, climate modeling 149 

efforts were primarily undertaken in conjunction with the IPCC process (and later, the Coupled 150 

Model Intercomparison Projects – CMIPs), and model projections were taken from models 151 

featured in the IPCC First Assessment Report (FAR – IPCC 1990), Second Assessment Report 152 

(SAR – IPCC 1996), Third Assessment Report (TAR – IPCC 2001), and Fourth Assessment 153 

Report (AR4 – IPCC 2007).  154 

 155 

The specific models projections evaluated were Manabe 1970 (hereafter Ma70), Mitchell 1970 156 

(Mi70), Benson 1970 (B70), Rascool and Schneider 1971 (RS71), Sawyer 1972 (S72), Broecker 157 

1975 (B75), Nordhaus 1977 (N77), Schneider and Thompson 1981 (ST81), Hansen et al. 1981 158 

(H81), Hansen et al. 1988 (H88), and Manabe and Stouffer 1993 (MS93). The energy balance 159 

model (EBM) projections featured in the main text of the FAR, SAR, and TAR were examined, 160 

while the CMIP3 multimodel mean (and spread) was examined for the AR4 (multimodel means 161 

were not used as the primary IPCC projections featured in the main text prior to the AR4). 162 

Details about how each individual model projection was digitized and analyzed as well as 163 

assessments of individual models included in the first three IPCC reports can be found in the 164 

supplementary materials. 165 

 166 

The AR4 projection was excluded from the main analysis in the paper as both the observational 167 

uncertainties and model projection uncertainties are too large over the short 2007-2017 period 168 

to draw many useful conclusions, and its inclusion makes the figures difficult to read. However, 169 

analyses including the AR4 projection can be found in the supplementary materials. 170 

 171 

We assessed model projections over the period between the date the model projection was 172 

published and the end of 2017, or when the model projection ended in cases where model runs 173 

did not extend through 2017. An end date of 2017 was chosen for the analysis because the 174 



 

ensemble of observational estimates of radiative forcings we used only extends through that 175 

date. 176 

 177 

Five different observational temperature time series were used in this analysis – NASA 178 

GISTEMP (Lenssen et al. 2019), NOAA GlobalTemp (Vose et al. 2012), Hadley/UEA 179 

HadCRUT4 (Morice et al. 2012), Berkeley Earth (Rohde et al. 2013), and Cowtan and Way 180 

(Cowtan and Way 2014). The observational temperature records used do not present a 181 

completely like-to-like comparison with models, as models provide surface air temperature 182 

(SAT) fields while observations are based on SAT fields over land and sea surface temperature 183 

(SST) fields over the ocean. This means that the trends in the models used here are likely 184 

biased high compared to observations, as model blended field trends are about 7% (± 5%) 185 

lower than model global SAT fields over the 1970-2017 period (Cowtan et al. 2015; Richardson 186 

et al. 2016). However, the absence of SST fields from the models analyzed here prevents a 187 

comparison of blended SAT/SST against observations. 188 

 189 

We compared observations to climate model projections over the model projection period using 190 

two approaches: change in temperature vs time, and change in temperature vs change in 191 

radiative forcing (“implied TCR”). We use an implied TCR metric to provide a meaningful model-192 

observation comparison even in the presence of forcing differences. Implied TCR is calculated 193 

by regressing temperature change against radiative forcing for both models and observations, 194 

and multiplying the resulting values by the forcing associated with doubled atmospheric CO2 195 

concentrations, 𝐹2𝑥, (following Otto et al. 2013): 196 

 197 

 𝑇𝐶𝑅𝑖𝑚𝑝𝑙𝑖𝑒𝑑  = 𝐹2𝑥𝛥𝑇/𝛥𝐹𝑎𝑛𝑡ℎ𝑟𝑜 198 

 199 

We express implied TCR with units of temperature using a fixed value of 𝐹2𝑥= 3.7 W/m2 (Vial et 200 

al. 2013). 𝛥𝐹𝑎𝑛𝑡ℎ𝑟𝑜 includes only anthropogenic forcings and excludes volcanic and solar 201 

changes to avoid introducing sharp inter-annual changes in forcing that would complicate the 202 

interpretation of TCR over shorter time periods. For the observational record, 𝛥𝐹𝑎𝑛𝑡ℎ𝑟𝑜 is based 203 

on a 1000-member ensemble of observationally-informed forcing estimates (Dessler and 204 

Forster 2018). Model forcings are recomputed from published formulas and tables when 205 

possible and otherwise digitized from published figures (see supplementary section S2 for 206 

details). Instantanious forcings rather than effective or efficacy-adjusted forcing are used, as 207 

those are all that is available for some early models (Hansen et al 2005; Marvel et al 2016; see 208 

supplementary materials section S1.0). Details on the approach used to calculate implied TCR 209 

can be found in supplementary materials section S1.2. 210 

 211 

Comparing models and observations via implied TCR assumes a linear relationship between 212 

forcing and warming, an approach that has been widely used in prior analyses (Gregory et al. 213 

2004; Otto et al. 2013). If forcing varies sufficiently slowly in time and deep ocean temperatures 214 

remain approximately constant, then a linear relationship is expected to hold with a constant of 215 

proportionality that depends on the strength of radiative feedbacks and ocean heat uptake (Held 216 

et. al. 2010). In this regime, our implied TCR metric provides information about model physics 217 

and is unaffected by the time rate of change of forcing; moreover, previous studies have 218 



 

suggested that the temperature response to 20th century anthropogenic forcing falls within this 219 

regime (Gregory and Mitchell 1997, Gregory and Forster 2008, Held et. al. 2010).  220 

 221 

However, sudden increases or decreases such as those associated with volcanic eruptions will 222 

not engender an equivalent immediate temperature response. For this reason, only 223 

anthropogenic forcings were used in estimating 𝑇𝐶𝑅𝑖𝑚𝑝𝑙𝑖𝑒𝑑, as all models evaluated lacked 224 

additional volcanic events during their projection periods with the exception of scenarios B and 225 

C of H88. Similarly, thermal inertia in the climate system can affect the relationship between 226 

temperature and external forcing if forcing increases sufficiently rapidly (Geoffroy et al. 2012). 227 

Scenarios where forcing is rapidly increasing will, all things being equal, tend to be further away 228 

from an equilibrium state than scenarios with more gradual increase after a given period of time 229 

(Rohrschneider et al. 2019) and thus have a lower implied TCR. With a few exceptions (e.g. 230 

RS71, H88 Scenarios A and C), however, most models evaluated had a rate of external forcing 231 

increase in the projection period within 1.3x of the mean estimate of observational forcings and 232 

thus likely fall into the regime where implied TCR depends largely on radiative feedbacks and 233 

ocean heat uptake. 234 

 235 

In this analysis we refer to model projections as consistent or inconsistent with observations 236 

based on a comparison of the differences between the two. Specifically, if the 95% confidence 237 

interval in the differences between the modelled and observed metrics includes 0, the two are 238 

deemed consistent; otherwise, they are inconsistent (Hausfather et al 2017). Additionally, we 239 

follow the approach of Hargreaves (2010) in calculating a skill score for each model for both 240 

temperature vs time and implied TCR metrics. This skill score is based on the root-mean-241 

squared errors of the model projection trend vs observations compared to a zero-change null-242 

hypothesis projection. See supplementary materials section S1.3 for details on calculating 243 

consistency and skill scores. 244 

 245 

Results 246 

 247 

A direct comparison of projected and observed temperature change during each historical 248 

model’s projection period can provide an effective test of model skill, provided that model 249 

projection forcings are reasonably in-line with the ensemble of observationally-informed 250 

estimates of radiative forcings. In about 9 of the 17 model projections examined, the projected 251 

forcings were within the uncertainty envelope of observational forcing ensemble. However, the 252 

remaining 8 models – RS71, H81 scenario 1, H88 scenarios A, B, and C, FAR, MS93, and TAR 253 

– had projected forcings significantly stronger or weaker than observed (Figure 1). For the latter, 254 

an analysis comparing the implied TCR between models and observations may provide a more 255 

accurate assessment of model performance.  256 

 257 



 

 258 
Figure 1. Rate of external forcing increase (in watts per meter squared per decade) in models 259 

and observations over model projection periods. 260 

 261 

Comparisons between climate models and observations over model projection periods are 262 

shown in Figure 2 for both temperature vs. time and implied TCR metrics (differences between 263 

models and observations are shown in Figure S2). Overall the majority of model projections 264 

considered were consistent with overvations under both metrics. Using the temperature vs time 265 

metric, 10 of the 17 model projections show results consistent with observations. Of the 266 

remaining 7 model projections, four project more warming than observed – N77, ST81, and H88 267 

scenarios A and B – while three project less warming than observed – RS71, H81 scenario 2a, 268 

and H88 scenario C. 269 

 270 



 

 271 
Figure 2: Comparison of trends in temperature vs time (top panel) and implied TCR (bottom 272 

panel) between observations and models over the model projection periods displayed at the 273 

bottom of the figure. Figure S1 shows a variant of this figure with the AR4 projections included. 274 

 275 

When mismatches between projected and observed forcings are taken into account, a better 276 

performance is seen. Using the implied TCR metric, 14 of the 17 model projections were 277 

consistent with observations; of the three that were not, Mi70 and H88 scenario C showed 278 

higher implied TCR than observations, while RS71 showed lower implied TCR (Schneider 1975; 279 

see supplementary text S2 for a discussion of the anomalously low-ECS model used in RS71).  280 

 281 

A number of model projections were inconsistent with observations on a temperature vs time 282 

basis, but are consistent once mismatches between modeled and observed forcings are taken 283 

into account. For example, whileN77 and ST81 projected more warming than observed, their 284 

implied TCRs are consistent with observations despite forcings within – though on the high end 285 

of – the ensemble range of observational estimates. Similarly, while H81 scenario 2a projects 286 

less warming than observed, its implied TCR is consistent with observations. 287 

 288 

A number of 1970s-era models (Ma70, Mi70, B70, B75, N77) show implied TCR on the high end 289 

of the observational ensemble-based range. This is likely due to their assumption that the 290 

atmosphere equilibrates instantly with external forcing, which omits the role of transient ocean 291 



 

heat uptake (Hansen et al. 1985). However, despite this high implied TCR, a number of the 292 

models (e.g. Ma70, Mi70, B70, B75) still end up providing temperature projections in-line with 293 

observations as their forcings were on the lower-end of observations due to the absence of any 294 

non-CO2 forcing agents in their projections. 295 

 296 

In principle the same underlying model should show consistent results for modestly different 297 

forcing scenarios under the implied TCR metric. However, the inconsistency of the H88 scenario 298 

C is illustrative of the limitations of the implied TCR metric when the model forcings differ 299 

dramatically from observations, as scenario C has roughly constant forcings after the year 2000. 300 

 301 

The H88 model provides a helpful illustration of the utility of an approach that can account for 302 

mismatches between modeled and observed forcings. H88 was featured prominently in 303 

congressional testimony, and the recent 30th anniversary of the event in 2018 focused 304 

considerable attention on the accuracy of the projection (United States. Cong. Senate 1988; 305 

Borenstein and Foster, 2018). H88’s “most plausible” scenario B overestimated warming 306 

experienced subsequent to publication by around 54% (Figure 3). However, much of this 307 

mismatch was due to overestimating future external forcing – particularly from CH4 and 308 

halocarbons (Figure S3). When H88 scenario B is evaluated based on the relationship between 309 

projected temperatures and projected forcings, the results are consistent with observations 310 

(Figures 2 and 3). 311 



 

 312 
Figure 3: Hansen et al. 1988 projections compared with observations on a temperature vs. time 313 

basis (top) and temperature vs external forcing (bottom). The dashed grey line in the top panel 314 

represent the start of the projection period. The transparent blue lines in the lower panel 315 

represent 500 random samples of the 5000 combinations of the 5 temperature observation 316 

products and the 1000 ensemble members of estimated forcings (the full ensemble is 317 

subsampled for visual clarity). The dashed blue lines show the 95% confidence intervals for the 318 

5000 member ensemble (see supplementary text S1.4 for details). Anomalies for both 319 

temperature and forcing are shown relative to a 1958-1987 pre-projection baseline. 320 

 321 

Skill score median estimates and uncertainties for both temperature vs time and implied TCR 322 

metrics are shown in Table 1 (see supplementary text S1.3). A skill score of one represents 323 

perfect agreement between a model projection and observations, while a skill score of less than 324 

zero represents worse performance than a no-change null-hypothesis projection. 325 

 326 

Model Timeframe ΔT / Δt skill ΔT / ΔF skill 

Ma70 1970-2000 0.84 [0.57 to 0.99] 0.51 [-0.11 to 0.94] 

Mi70 1970-2000 0.91 [0.69 to 0.99] 0.41 [-0.26 to 0.90] 



 

B70 1970-2000 0.78 [0.45 to 0.97] 0.63 [0.06 to 0.96] 

RS71 1971-2000 0.19 [0.16 to 0.25] 0.42 [0.28 to 0.59] 

S72 1972-2000 0.83 [0.49 to 0.99] 0.83 [0.43 to 0.98] 

B75 1975-2010 0.85 [0.64 to 0.98] 0.72 [0.31 to 0.97] 

N77 1977-2017 0.67 [0.44 to 0.84] 0.79 [0.48 to 0.98] 

ST81 1981-2017 0.76 [0.53 to 0.94] 0.82 [0.52 to 0.98] 

H81(1) 1981-2017 0.93 [0.81 to 0.99] 0.74 [0.59 to 0.93] 

H81(2a) 1981-2017 0.77 [0.66 to 0.91] 0.87 [0.69 to 0.99] 

H88(A) 1988-2017 0.38 [0.01 to 0.68] 0.81 [0.63 to 0.98] 

H88(B) 1988-2017 0.48 [0.08 to 0.77] 0.79 [0.41 to 0.98] 

H88(C) 1988-2017 0.66 [0.48 to 0.89] 0.28 [-0.46 to 0.84] 

FAR 1990-2017 0.63 [0.29 to 0.87] 0.86 [0.68 to 0.99] 

MS93 1993-2017 0.71 [0.20 to 0.97] 0.87 [0.61 to 0.99] 

SAR 1995-2017 0.73 [0.58 to 0.95] 0.66 [0.49 to 0.91] 

TAR 2001-2017 0.81 [0.15 to 0.98] 0.76 [-0.13 to 0.98] 

AR4 2007-2017 0.56 [0.35 to 0.92] 0.60 [0.37 to 0.93] 

Table 1: Model skill scores over the projection period, where 1 represents perfect agreement 327 

with observations and less than 0 represents worse performance than a no-change null 328 

hypothesis. Both temperature vs time (ΔT / year) and implied TCR (ΔT / ΔF) median scores and 329 

uncertainties are shown. 330 

 331 

The average of the median skill scores across all the model projections evaluated is 0.69 for the 332 

temperature vs time metric. Only three projections (RS71, H88 scenario A, and H88 scenario B) 333 

had skill scores below 0.5, while H81 scenario 1 had the highest skill score of any model – 0.93. 334 

Using the implied TCR metric, the average projection skill of the models was also 0.69. Models 335 

with implied TCR skill scores below 0.5 include Mi70, RS71, and H88 scenario C, while MS93 336 

had the highest skill score at 0.87. H88 scenarios A and B and the IPCC FAR all performed 337 

substantially better under an implied TCR metric, reflecting the role of misspecified future 338 

forcings in their high temperature projections. It is important to note that the skill score 339 

uncertainties for very short future projection periods – as in the case of the TAR and AR4 – are 340 

quite large and should be treated with caution due to the combination of short-term temperature 341 

variability and uncertainties in the forcings. 342 

 343 

A number of model projections had external forcings that poorly matched observational 344 

estimates due to the exclusion of non-CO2 forcing agents. However, all models included 345 



 

projected future CO2 concentrations, providing a common metric for comparison, and these are 346 

shown in Figure S4. Most of the historical climate model projections overestimated future CO2 347 

concentrations, some by as much as 40 parts per million over current levels, with projected CO2 348 

concentrations increasing up to twice as fast as actually observed (Meinshausen et al. 2017). Of 349 

the 1970s climate model projections, only Mi70 projected atmospheric CO2 growth in-line with 350 

observations. Many 1980s projections similarly overestimated CO2, with only the Hansen 88 351 

scenarios A and B projections close to observed concentrations. 352 

 353 

The first three IPCC assessments included projections based on simple energy balance models 354 

tuned to GCM results, as relatively few individual model runs were available at the time. From 355 

the AR4 onward IPCC projections were based on the multi-model mean and model spread. We 356 

examine individual models from the first three IPCC reports on both a temperature vs time and 357 

implied TCR basis in Figure S5. 358 

 359 

Conclusions and Discussion 360 

 361 

In general, past climate model projections evaluated in this analysis were skillful in predicting 362 

subsequent GMST warming in the years after publication. While some models showed too 363 

much warming and a few showed too little, most models examined showed warming consistent 364 

with observations, particularly when mismatches between projected and observationally-365 

informed estimates of forcing were taken into account. We find no evidence that the climate 366 

models evaluated in this paper have systematically overestimated or underestimated warming 367 

over their projection period. The projection skill of the 1970s models is particularly impressive 368 

given the limited observational evidence of warming at the time, as the world was thought to 369 

have been cooling for the past few decades (e.g. Broecker 1975; Broecker 2017). 370 

 371 

A number of high-profile model projections – H88 scenarios A and B and the IPCC FAR in 372 

particular – have been criticised for projecting higher warming rates than observed (e.g. 373 

Michaels and Maue 2018). However, these differences are largely driven by mismatches 374 

between projected and observed forcings. H88 A and B forcings increased 97% and 27% faster, 375 

respectively, than the mean observational estimate, and FAR forcings increased 55% faster. On 376 

an implied TCR basis, all three projections have high model skill scores and are consistent with 377 

observations. 378 

 379 

While climate models have grown substantially more complex than the early models examined 380 

here, the skill that early models have shown in successfully projecting future warming suggests 381 

that climate models are effectively capturing the processes driving the multi-decadal evolution of 382 

GMST. While the relative simplicity of the models analyzed here renders their climate 383 

projections operationally obsolete, they may be useful tools for verifying or falsifying methods 384 

used to evaluate state-of-the-art climate models. As climate model projections continue to 385 

mature, more signals are likely to emerge from the noise of natural variability and allow for the 386 

retrospective evaluation of other aspects of climate model projections. 387 

 388 
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